Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Infect Dis Model ; 8(1): 228-239, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2235217

ABSTRACT

Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.

2.
Build Environ ; 222: 109440, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1965601

ABSTRACT

Air distribution is an effective engineering measure to fight against respiratory infectious diseases like COVID-19. Ventilation indices are widely used to indicate the airborne infection risk of respiratory infectious diseases due to the practical convenience. This study investigates the relationships between the ventilation indices and airborne infection risk to suggest the proper ventilation indices for the evaluation of airborne infection risk control performance of air distribution. Besides the commonly used ventilation indices of the age of air (AoA), air change effectiveness (ACE), and contaminant removal effectiveness (CRE), this study introduces two ventilation indices, i.e., the air utilization effectiveness (AUE) and contaminant dispersion index (CDI). CFD simulations of a hospital ward and a classroom served by different air distributions, including mixing ventilation, displacement ventilation, stratum ventilation and downward ventilation, are validated to calculate the ventilation indices and airborne infection risk. A three-step correlation analysis based on Spearman's rank correlation coefficient, Pearson correlation coefficient, and goodness of fit and a min-max normalization-based error analysis are developed to qualitatively and quantitatively test the validity of ventilation indices respectively. The results recommend the integrated index of AUE and CDI to indicate the overall airborne infection risk, and CDI to indicate the local airborne infection risk respectively regardless of the effects of air distribution, supply airflow rate, infectivity intensity, room configuration and occupant distribution. This study contributes to airborne transmission control of infectious respiratory diseases with air distribution.

3.
Results Phys ; 27: 104495, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1525938

ABSTRACT

The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. The purpose of this study is to predict new cases and deaths rate one, three and seven-day ahead during the next 100 days. The motivation for predicting every n days (instead of just every day) is the investigation of the possibility of computational cost reduction and still achieving reasonable performance. Such a scenario may be encountered in real-time forecasting of time series. Six different deep learning methods are examined on the data adopted from the WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. The bidirectional extension is then considered for each method to forecast the rate of new cases and new deaths in Australia and Iran countries. This study is novel as it carries out a comprehensive evaluation of the aforementioned three deep learning methods and their bidirectional extensions to perform prediction on COVID-19 new cases and new death rate time series. To the best of our knowledge, this is the first time that Bi-GRU and Bi-Conv-LSTM models are used for prediction on COVID-19 new cases and new deaths time series. The evaluation of the methods is presented in the form of graphs and Friedman statistical test. The results show that the bidirectional models have lower errors than other models. A several error evaluation metrics are presented to compare all models, and finally, the superiority of bidirectional methods is determined. This research could be useful for organisations working against COVID-19 and determining their long-term plans.

4.
Chaos Solitons Fractals ; 143: 110583, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1029063

ABSTRACT

2019 novel coronavirus (COVID 19) infections detected as the first official records of the disease in Wuhan, China, affected almost all countries worldwide, including Turkey. Due to the number of infected cases, Turkey is one of the most affected countries in the world. Thus, an examination of the pandemic data of Turkey is a critical issue to understand the shape of the spread of the virus and its effects. In this study, we have a close look at the data of Turkey in terms of the variables commonly used during the pandemic to set an example for possible future pandemics. Both time series modeling and popular efficiency measurement methods are used to evaluate the data and enrich the results. It is believed that the results and discussions are useful and can contribute to the language of numbers for pandemic researchers working on the elimination of possible future pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL